多元函数的介值定理设函数f(x,y)在区域D内连续,又点(xi,yi)属于D(i=1,2,.n).证明,在D内存在一点(a,b)使得f(a,b)=(f(x1,y1)+f(x2,y2)+.+f(xn,yn))/n我这一部分不是很懂,分不多,
问题描述:
多元函数的介值定理
设函数f(x,y)在区域D内连续,又点(xi,yi)属于D(i=1,2,.n).证明,在D内存在一点(a,b)使得f(a,b)=(f(x1,y1)+f(x2,y2)+.+f(xn,yn))/n
我这一部分不是很懂,分不多,
答