已知m是方程x2-2012x+1=0的一个根,试求m2-2011m+2012m2+1的值.

问题描述:

已知m是方程x2-2012x+1=0的一个根,试求m2-2011m+

2012
m2+1
的值.

∵m是方程x2-2012x+1=0的根,
∴m2-2012m+1=0,
∴m2-2011m=m-1,m2+1=2012m,
∴m2-2011m+

2012
m2+1
=m-1+
2012
2012m
=m+
1
m
-1.
设方程的另外一个根为α,则m•α=1,m+α=2012,
∴α=
1
m
,m+
1
m
=2012,
∴m2-2011m+
2012
m2+1
=2012-1=2011.
答案解析:先根据一元二次方程的解的定义得到m2-2012m+1=0,变形有m2-2011m=m-1,m2+1=2012m,再根据根与系数的关系得出m+
1
m
=2012,再利用整体思想进行计算.
考试点:一元二次方程的解.
知识点:本题考查了一元二次方程的解的定义,根与系数的关系及整体代入法,难度适中.