已知二次函数f(x)=ax^2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,

问题描述:

已知二次函数f(x)=ax^2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,
并且当x∈(0,2)时,恒有f(x)≤(x+1\2)^2
1.求f(1)的值
2.证明a>0,c>0
3.当x∈[-1,1]时,函数g(x)=f(x)-mx(x∈R)是单调函数,求证:m≤0或m≥1

我想问问:(x+1\2)^2是【2/(x+1)】²还是【(x+1)/2】²还是(x+0.5)²嗯,稍等!1,由对任意实数x,恒有f(x)-x≥0,可令x=1得:f(1)-1≥0,即f(1)≥1当x∈(0,2)时,恒有f(x)≤(x+1\2)^2可令x=1得:f(1)≤(1+1\2)^2=1所以1≤f(1)≤1所以f(1)=12,∵f(-1)=0,f(1)=1∴a-b+c=0,a+b+c=1联立上式解得:b=1/2,所以f(x)=ax²+x/2+c由对任意实数x,恒有f(x)-x≥0,即:ax²-1/2x+c≥0恒成立对于二次函数,使得ax²-1/2x+c≥0在x∈R上恒成立,必定开口向上即a>0且△=1/4-4ac≤0,即:1/16≤ac,其中a>0,所以c>03,依题,g(x)=f(x)-mx=ax²+x/2+c-mx=ax²+(1/2-m)x+c二次函数g(x)的单调性为:当x≥(2m-1)/4a时,函数单调递增当x≤(2m-1)/4a时,函数单调递减由于函数在x∈[-1,1]时是单调函数,有如下两种情况:①函数在x∈[-1,1]时是单调递增函数则:-1≥(2m-1)/4a