实数x、y满足x^2;+xy+y^2;=2,记u=x^;-xy+y^2;,则u的取值范围是yiz
问题描述:
实数x、y满足x^2;+xy+y^2;=2,记u=x^;-xy+y^2;,则u的取值范围是yiz
答
x^2+xy+y^2=2
(x-y)^2+3xy=2
(x-y)^2=2-3xy≥0
xy≤2/3
x^2+xy+y^2=2
(x+y)^2-xy=2
(x-y)^2=2+xy≥0
xy≥-2
所以 -2≤xy≤2/3
x^2-xy+y^2=u
x^2+xy+y^2=2
等式两边相减
-2xy=u-2
因为 -2≤xy≤2/3
所以 4≥u-2≥-4/3
即 2/3≤u≤6