已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点

问题描述:

已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点
(一)若函数的两个零点是-1和-3,求K得值
(二)若函数的两个零点是a和b,求a2+b2的取值范围

(1)
对于方程x^2-(k-2)x+k^2+3k+5=0
由韦达定理,得
(-1)+(-3)=k-2
(-1)(-3)=k^2+3k+5
解得k=-2
(2)
函数有两个零点,对于方程x^2-(k-2)x+k^2+3k+5=0,判别式>0
[-(k-2)]^2-4(k^2+3k+5)>0
整理,得
3k^2+16k+16