证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数
问题描述:
证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数
答
证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数