证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数

问题描述:

证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数

敢问是不是打错了,应该是F((x-a)/(z-c),(y-b)/(z-c))=0吧
设曲面任意一点(x1,y1,z1)
Fx=F1/(z-c)
Fy=F2/(z-c)
Fz=[(a-x)/(z-c)^2]F1+[(b-y)/(z-c)^2]F2
在该点处的切平面方程为[F1/(z1-c)](x-x1)+[F2/(z1-c)](y-y1)+[(a-x1)/(z-c)^2]F1+[(b-y1)/(z-c)^2]F2(z-z1)=0,
合并同类项得到:
[x-x1+(z-z1)*(a-x1)/(z1-c)]F1/(z1-c)+[y-y1+(z-z1)*(b-y1)/(z1-c)]F2/(z1-c)=0
因为过定点,故令x-x1+(z-z1)*(a-x1)/(z1-c)=0,y-y1+(z-z1)*(b-y1)/(z1-c)=0
很容易得到x=a,y=b,z=c满足.
没有什么太好的办法,请参考.F(u,v)这样不是表示只有两个未知数吗,z应该是由x,y构成的函数把,也要坐标表示吗不是,F(u,v)表示的是一种函数关系,F((x-a)/(z-c),(y-b)/(z-c)),确实是三元变量,你可以理解为这f(x,y,z)=0上任意一点的切平面通过一定点,建议你多做一些类似题,可以加深理解的,不过想短期内搞明白,可能不行。