已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,那么这个三角形是 ( ) A.等边三角形 B.等腰三角形 C.不等边三角形 D.直角三角形
问题描述:
已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,那么这个三角形是
( )
A. 等边三角形
B. 等腰三角形
C. 不等边三角形
D. 直角三角形
答
∵关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,
∴△=4(b-a)2-4(c-b)(a-b)=0,即(b-a)(c-a)=0,
∴b-a=0或c-a=0,解得b=a或c=a;
∵a,b,c 是△ABC的三条边长,
∴△ABC是等腰三角形;
故选B.