已知函数f(x)=(x-k)ex.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.

问题描述:

已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.

(Ⅰ)f′(x)=(x-k+1)ex
令f′(x)=0,得x=k-1,
f′(x)f(x)随x的变化情况如下:

x (-∞,k-1) k-1 (k-1,+∞)
 f′(x) - 0 +
  f(x) -ek-1
∴f(x)的单调递减区间是(-∞,k-1),f(x)的单调递增区间(k-1,+∞);
(Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(0)=-k;
当0<k-1<1,即1<k<2时,由(I)知,f(x)在区间[0,k-1]上单调递减,f(x)在区间(k-1,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(k-1)=-ek-1
当k-1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,
∴f(x)在区间[0,1]上的最小值为f(1)=(1-k)e;
综上所述f(x)min=
-k k≤1
-ek-1 1<k<2
(1-k)e k≥2