已知关于x、y的方程6x+5y-2-3ky+4k=0合并同类项后不含y项,求方程(k-1)2x-k=0的解.

问题描述:

已知关于x、y的方程6x+5y-2-3ky+4k=0合并同类项后不含y项,求方程(k-1)2x-k=0的解.

由原方程,得
6x+(5-3k)y+4k-2=0,
∵关于x、y的方程6x+5y-2-3ky+4k=0合并同类项后不含y项,
∴5-3k=0,
解得,k=

5
3

∴(k-1)2x-k=(
5
3
-1)2x-
5
3
=0,
解得,x=
15
4

答案解析:先对已知方程的左边合并同类项,然后知5-3k=0,据此可以求得k的值;最后将其代入方程(k-1)2x-k=0,通过解该方程求值.
考试点:解一元一次方程;合并同类项.
知识点:本题考查了解一元一次方程、合并同类项.提取题目中的关键信息“合并同类项后不含y项”是解题的难点.