设f(x)在[0,1]上可导且满足f(1)等于 xf(x)在[0,1]的定积分证明:必有一点t属于(0,1),使tf`(t)+f(t)=0最后要证明的是t乘以f(t)的导数,导数那一撇打不出来,弄得挺模糊的,仔细看可以看清楚的!期望可以得到您的帮助!

问题描述:

设f(x)在[0,1]上可导且满足f(1)等于 xf(x)在[0,1]的定积分证明:必有一点t属于(0,1),使tf`(t)+f(t)=0
最后要证明的是t乘以f(t)的导数,导数那一撇打不出来,弄得挺模糊的,仔细看可以看清楚的!期望可以得到您的帮助!

好像缺个条件吧,f(1)=0吧.设函数F(x)=xf(x)..因为F(0)=0和F(1)=0,根据罗尔定理,(0,1)在上必存在一点§使得F`(x)=0.又因为F`(x)=xf`(x)+f(x),.所以存在一点使得tf`(t)+f(t)=0