四棱锥P-ABCD中,角ABC=角BAD=90度,BC=2AD三角形PAB和三角形PAD都是正三角形1,证明:PB垂直于CD2,求二面角A-PD-C大小
问题描述:
四棱锥P-ABCD中,角ABC=角BAD=90度,BC=2AD三角形PAB和三角形PAD都是正三角形1,证明:PB垂直于CD2,求二面角A-PD-C大小
答
(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABC...