若a+2b+3c=12,且a2+b2+c2=ab+bc+ca,则a+b2+c3=______.

问题描述:

若a+2b+3c=12,且a2+b2+c2=ab+bc+ca,则a+b2+c3=______.

∵a2+b2+c2=ab+bc+ca,
∴2(a2+b2+c2)=2(ab+bc+ca),
即2(a2+b2+c2)-2(ab+bc+ca)=0,
整理,得(a2-2ab+b2)+(a2-2ca+c2)+(b2-2bc+c2)=0,
即:(a-b)2+(a-c)2+(b-c)2=0,
∴a=b=c,
又∵a+2b+3c=12,
∴a=b=c=2.
∴a+b2+c3=2+4+8=14.
答案解析:通过已知条件,需要求出a、b、c的值,把a2+b2+c2=ab+bc+ca两边都乘以2,然后根据完全平方公式整理得到a=b=c,再代入第一个条件求出a的值,然后代入代数式计算即可.
考试点:完全平方公式.


知识点:本题考查了完全平方公式,巧妙地用到了完全平方公式,把已知条件转化为一个完全平方式,再由平方数非负数的性质,得出三个未知数间的相等关系,从而求得三个未知数的值.