已知X平方-2根号3乘x+y平方+2y+4=0,求y分之x

问题描述:

已知X平方-2根号3乘x+y平方+2y+4=0,求y分之x

x^2 -2√3 x+y^2+2y+4=0
(x^2 -2√3 x+3)+(y^2+2y+1)=0
(x-√3)^2+(y+1)^2=0
所以x=√3,y=-1
所以x/y=-√3

把4
拆成3+1
(x²-2√3x+3)+(y²+2y+1)=0
(x-√3)²+(y+1)²=0
平方大于等于0
相加等于0,若有一个大于0,则另一个小于0,不成立.
所以两个都等于0
所以x-√3=0,y+1=0
x=√3,y=-1
x/y=-√3