整式乘法与因式分解由这个(x-y)^2-2(x-y)*(1/2)+(1/2)^2=0 怎么能到这个x-y=1/2(1)

问题描述:

整式乘法与因式分解
由这个(x-y)^2-2(x-y)*(1/2)+(1/2)^2=0
怎么能到这个x-y=1/2(1)

(x-y)^2-2(x-y)*(1/2)+(1/2)^2=[(x-y)-1/2]^2=0
(x-y)-1/2=0
x-y=1/2

(x-y)^2-2(x-y)*(1/2)+(1/2)^2=0
(x-y-1/2)^2=0
x-y-1/2=0
x-y=1/2