已知X+4Y-3Z=0,4X-5Y+2Z=0(XYZ≠0),求(3x²+2xy+z²)/(x²+y²)的值,
问题描述:
已知X+4Y-3Z=0,4X-5Y+2Z=0(XYZ≠0),求(3x²+2xy+z²)/(x²+y²)的值,
答
X+4Y-3Z=0和4X-5Y+2Z=0把Y当作常数来解出X,Z
X-3Z=4Y,4X+2Z=5Y。解得:X=14Y/16,Z=-11Y/16
代入算式:(3x²+2xy+z²)/(x²+y²)约去y就是:3(14/16)^2+2*14/16+(11/16)^2/[(14/16)^2+1]
答
X+4Y-3Z=0 (1)
4X-5Y+2Z=0 (2)
(1)*4-(2),得:3Y=2Z
(1)*2-(2)*3,得:2X=Y
把Z=3/2 Y,X=1/2 Y 带入式(3x²+2xy+z²)/(x²+y²),解得为16/9