复合函数求导 f(x)= 3X^4 * (x-1)^1/2

问题描述:

复合函数求导 f(x)= 3X^4 * (x-1)^1/2

f'(x)=12x^3*(x-1)^1/2+3/2x^4*(x-1)^(-1/2)

f'(x)=(12x^3)*(x-1)^(1/2)+(3x^4)*(1/2)*(x-1)^(-1/2)
=(12x^3)*(x-1)^(1/2)+(3/2)*(x^4)*(x-1)^(-1/2)

d(f(x)/dx
=d(3x^4 *(x-1)^1/2)/dx
=(x-1)^(1/2)*d(3x^4)/dx + 3x^4*d((x-1)^(1/2))/dx
=12*(x-1)^(1/2)*x^3+3/2*x^4*(x-1)^(-1/2)