因式分解下列各式:(1) xy^2+3xy-10x-y^2+4y-4 (2) (x+2)(x+3)(x-4)(x-5)-44

问题描述:

因式分解下列各式:
(1) xy^2+3xy-10x-y^2+4y-4
(2) (x+2)(x+3)(x-4)(x-5)-44

(1)=(y-2)(xy+5x-y+2)
(2)=(x^2-2x-4)(x^2-2x-19)

(1) xy^2+3xy-10x-y^2+4y-4
=x(y^2+3y-10)-(y^2-4y+4)
=x(y+5)(y-2)-(y-2)^2
=(y-2)(xy+5x-y+2)
(2) (x+2)(x+3)(x-4)(x-5)-44
=(x+2)(x-4)(x+3)(x-5)-44
=(x^2-2x-8)(x^2-2x-15)-44
=(x^2-2x-23/2+7/2)(x^2-2x-23/2-7/2)-44
=(x^2-2x-23/2)^2-.49/4-44
=(x^2-2x-23/2)^2-.225/4
=(x^2-2x-23/2+15/2)(x^2-2x-23/2-15/2)
=(x^2-2x-4)(x^2-2x-19)

(1)原式=x(y^2+3y-10)-(y^2-4y+4)=x(y-2)(y+5)-(y-2)^2=(y-2)(xy+5x-y+2)(2)第二题观察一下,可以用(x+2)(x-4)与(x+3)(x-5)搭配相乘,得到(x^2-2x-8)和(x^2-2x-15),因为两项乘积有共同项x^2-2x,要想办法消去后面的...