如图,E、F是△ABC的边AB、BC边的中点,在AC上取G、H两点,使AG=GH=HC,连接EG、FH并延长交于点D求证:四边形ABCD是平行四边形.

问题描述:

如图,E、F是△ABC的边AB、BC边的中点,在AC上取G、H两点,使AG=GH=HC,连接EG、FH并延长交于点D
求证:四边形ABCD是平行四边形.

证明:连接BD交AC于O,连结BG,BH,
∵E是AB中点,AG=GH,
∴EG是△ABH的一条中位线,
∴EG∥BH,即GD∥BH,
同理可证BG∥DH,
∴四边形BHDG是平行四边形.
∴BO=OD,GO=OH,
又∵AG=HC,
∴AG+GO=HC+OH,
即AO=OC,
又∵BO=OD,
∴四边形ABCD是平行四边形
答案解析:连接BD交AC于O,连结BG,BH,首先证得四边形BHDG是平行四边形得到AO=OC,然后利用对角线互相平分的四边形是平行四边形判定即可.
考试点:平行四边形的判定.
知识点:本题考查了平行四边形的判定,解题的关键是正确的作出辅助线并牢记平行四边形的判定定理,难度不大.