求微分方程xy"+y'=0的通解

问题描述:

求微分方程xy"+y'=0的通解

∵xy"+y'=0 ==>xdy'/dx+y'=0 ==>dy'/y'=-dx/x ==>ln│y'│=-ln│x│+ln│C1│ (C1是积分常数) ==>y'=C1/x ∴y=∫C1/xdx ...