已知:如图,在⊙O中,弦AB的长是半径OA的3倍,C为弧AB的中点.AB、OC相交于P点,求证:四边形OACB是菱形.
问题描述:
已知:如图,在⊙O中,弦AB的长是半径OA的
倍,C为弧AB的中点.AB、OC相交于P点,求证:四边形OACB是菱形.
3
答
知识点:此题考查了垂径定理,勾股定理,菱形的判定,以及平行四边形的判定,熟练掌握垂径定理是解本题的关键.
证明:∵C为
的中点,OC为半径,AB
∴PA=PB,AB⊥OC,
∵AP=
AB=1 2
AO,
3
2
∴OP=
=
AO2−AP2
=
AO2−
AO2
3 4
OA=1 2
OC,1 2
∴PC=
OC,即OP=PC,1 2
∴四边形OACB是平行四边形,
又∵AB⊥OC,
∴四边形OACB是菱形.
答案解析:由C为弧AB的中点,OC为半径,利用垂径定理的逆定理得到PA=PB,OC垂直于AB,由AP为AB的一半,根据题中条件用AO表示出AP,在直角三角形AOP中,利用勾股定理表示出OP,进而确定出OP=PC,即四边形ACBO对角线互相平分,可得出此四边形为平行四边形,再由对角线垂直的平行四边形为菱形即可得证.
考试点:垂径定理;勾股定理;菱形的判定;圆心角、弧、弦的关系.
知识点:此题考查了垂径定理,勾股定理,菱形的判定,以及平行四边形的判定,熟练掌握垂径定理是解本题的关键.