lim(x→0){1+X分之3}的X次方,

问题描述:

lim(x→0){1+X分之3}的X次方,

lim(x→0){1+3/x}^x=lim(x→0){1+3/x}^[(x/3)×3]=lim(x→0))[{1+3/x}^(x/3)]³
如果x→∞原式=e³,可是x→0极限不存在

lim(x->0)( 1+3/x)^x
let
1/y = 3/x
lim(x->0)( 1+3/x)^x
=lim(y->0)( 1+1/y)^(3y)
= e^3