求y=arctan根号[(1-x^2)/(1+x^2)]的微分

问题描述:

求y=arctan根号[(1-x^2)/(1+x^2)]的微分

y=arctan√[(1-x²)/(1+x²)]y'=1/[1+(1-x²)/(1+x²)]* 1/{2√[(1-x²)/(1+x²)]}* [-2x(1+x²)-2x(1-x²)]/(1+x²)²=-x/√[(1+x²)(1-x²)]