已知函数f(x)=logax+bx−b(a>0,a≠1,b>0).(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)讨论f(x)的单调性,并证明.

问题描述:

已知函数f(x)=loga

x+b
x−b
(a>0,a≠1,b>0).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)讨论f(x)的单调性,并证明.

(1)因为

x+b
x−b
>0,解之得x<-b或x>b,
∴函数的定义域为(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定义域是关于原点对称的区间
f(-x)=loga
−x+b
−x−b
=loga
x−b
x+b

∵-f(x)=loga(
x+b
x−b
-1=loga
x−b
x+b

∴f(-x)=-f(x),可得f(x)为奇函数.…(6分)
(3)证明:设b<x1<x2,则
f(x1)-f(x2)=loga
(x1+b)(x2−b)
(x2+b)(x1−b)

(x1+b)(x2−b)
(x2+b)(x1−b)
-1=
2b(x2x1)
(x2+b)(x1−b)
>0
∴当a>1时,f(x1)-f(x2)>0,可得f(x1)>f(x2),f(x)在(b,+∞)上为减函数;
当0<a<1时,f(x1)-f(x2)<0,可得f(x1)<f(x2),f(x)在(b,+∞)上为增函数.
同理可得:当a>1时,f(x)在(-∞,-b)上为减函数;当0<a<1时,f(x)在(-∞,-b)上为增函数.
综上所述,当a>1时,f(x)在(-∞,-b)和(b,+∞)上为减函数;当0<a<1时,f(x)在(-∞,-b)和(b,+∞)上为增函数.…(12分)
答案解析:(1)根据对数的真数大于0,解关于x的不等式即可得到f(x)的定义域;
(2)根据函数奇偶性的定义结合对数的运算性质,可证出f(-x)=-f(x),得f(x)为奇函数;
(3)设b<x1<x2,将f(x1)与f(x2)作差化简整理,可得:当a>1时,f(x1)-f(x2)>0;当0<a<1时,f(x1)-f(x2)<0,由此结合函数单调性的定义即可得到函数在(b,+∞)上的单调性.同理可得函数在区间(-∞,-b)上的单调性,从而得到本题答案.
考试点:函数单调性的判断与证明;函数的定义域及其求法;函数奇偶性的判断.
知识点:本题给出含有分式的对数形式的函数,求函数的定义域并求函数的单调性、奇偶性.着重考查了函数奇偶性的判断、函数的定义域及其求法和函数单调性的判断与证明等知识,属于基础题.