为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

问题描述:

为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,
(1)求购进A,B两种纪念品每件需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

(1)设A,B两种纪念品每件需x元,y元.10x+5y=10004x+3y=550,解得:x=25y=150.答:A,B两种纪念品每件需25元,150元;(2)设购买A种纪念品a件,B种纪念品b件.25a+150b=100006b≤a≤8b,解得2007≤b≤1003...
答案解析:(1)关系式为:A种纪念品10件需要钱数+B种纪念品5件钱数=1000;A种纪念品4件需要钱数+B种纪念品3件需要钱数=550;
(2)关系式为:A种纪念品需要的钱数+B种纪念品需要的钱数≤10000;购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍;
(3)计算出各种方案的利润,比较即可.
考试点:一元一次不等式组的应用;二元一次方程组的应用.


知识点:解决本题的关键是读懂题意,找到符合题意的相应的关系式是解决问题的关键,注意第二问应求得整数解.