一个圆锥和一个圆柱,下底面在同一平面上,它们有公共的内切球,记圆锥的体积为V1,圆柱的体积为V2,且V1=kV2,则kmin=______.

问题描述:

一个圆锥和一个圆柱,下底面在同一平面上,它们有公共的内切球,记圆锥的体积为V1,圆柱的体积为V2,且V1=kV2,则kmin=______.

设球半径为r,圆柱的底面半径也为r,高为2r,
则V2=2πr3
设圆锥底半径为R=rcotα,高H=Rtan2α.
则V1=

1
3
πR2H=
1
3
(πr3cos2αtan2α)
则V1:V2=(cos2αtan2α):6.
∵cos2αtan2α=
2
tan2α−tan4α

则当tan2α=
1
2
,即tanα=
2
2
时,cos2αtan2α取最小值8,
此时kmin=
4
3

故答案为:
4
3

答案解析:设球半径为r,根据圆柱的底面半径与内切球半径相等,高等于内切球直径,我们易求出满足条件的圆柱的体积,设圆锥底半径为R=rcotα,则我们易求出圆锥的体积(含参数α),进而可以求出K的表达式,再利用函数值域的求法,我们易求出满足条件kmin
考试点:棱柱、棱锥、棱台的体积.
知识点:本题考查的知识点是圆锥的体积,圆锥的体积,及圆柱与圆柱的内切球,其中设球半径为r,进而给出圆柱的体积及圆锥的体积是解答本题的关键.