sinx+cisx=a,则sinx cosx=?sin^3x+cos^3x=?sin^4x+cos^4x?
问题描述:
sinx+cisx=a,则sinx cosx=?sin^3x+cos^3x=?sin^4x+cos^4x?
答
sinx+cosx =a, (sinx+cosx)^2 =a^2,sinx cosx=(a^2-1)/2,sin^3x+cos^3x=(sin^2x-sinxcosx+cos^2x)=(3- a^2)/2,sin^4x+cos^4x= sin^2x (1- cos^2x)+ cos^2x (1- sins^2x)= sin^2 cos^2x-2 sin^2os^2x=(-a^4+2 a^2+1)
答
1、因为,(sinx+cosx)²=a²所以,sinxcosx=(a²-1)/22、sin^3x+cos^3x=(sinx+cosx)(sin²x-sinxcosx+cos²x)=a[1-(a²-1)/2]=a(3-a²)/23、sin^4x+cos^4x=(sin²x+cos²x)²...