求数列前n项和6/1*3,6/3*5,6/5*7……,6/(2n-1)(2n+1),……

问题描述:

求数列前n项和6/1*3,6/3*5,6/5*7……,6/(2n-1)(2n+1),……

an=6/(2n-1)(2n+1)=3[ 1/(2n-1) - 1/(2n+1)]
∴Sn=a1+a2+·····an=3[1- 1/3+ 1/3- 1/5······+1/(2n-1)- 1/(2n+1)]=3[1-1/(2n+1)]

6/1*3+6/3*5+6/5*7+……,6/(2n-1)(2n+1)
=6×1/2×(1-1/3+1/3-1/5+1/5-1/7+..+1/(2N-1)-1/(2N+1))
=3×(1-1/2N+1)
=6N/(2N+1)

这是我在静心思考后得出的结论,
如果能帮助到您,希望您不吝赐我一采纳~(满意回答)
如果不能请追问,我会尽全力帮您解决的~
答题不易,如果您有所不满愿意,请谅解~

  数列前n项6/1*3,6/3*5,6/5*7……,6/(2n-1)(2n+1),  Sn=6/1*3+6/3*5+6/5*7+……+6/(2n-1)(2n+1),  =3(2/1*3+2/3*5+2/5*7+……+2/(2n-1)(2n+1)),  =3[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]  =3[1-1...