若干个立方体形状的积木摆成如图所示的塔形,平放于桌面上,上面立方体的下底四个顶点是下面相邻立方体的上底各边中点,最下面的立方体棱长为1,如果塔形露在外面的面积超过7(不包括下底面),则立方体的个数至少是( )A. 2B. 3C. 4D. 5
问题描述:
若干个立方体形状的积木摆成如图所示的塔形,平放于桌面上,上面立方体的下底四个顶点是下面相邻立方体的上底各边中点,最下面的立方体棱长为1,如果塔形露在外面的面积超过7(不包括下底面),则立方体的个数至少是( )
A. 2
B. 3
C. 4
D. 5
答
∵要求塔形露在外面的面积超过7(不包括下底面),最下面的立方体棱长为1,
∴最下面的立方体露出的面积为:4×(1×1)+0.5=4.5;
那么上面一层假如有立方体的话露出的面积为4×0.5+0.5×0.5=2.25,这两层加起来的面积为:6.75.
那么上面一层假如还有立方体的话露出的面积为4×0.25+0.25×0.25=1.0625,这三层加起来的面积为:7.8125.
∴立方体的个数至少是3.
故选B.
答案解析:根据图示逐层算出露出的面积加以比较即解.
考试点:几何体的表面积.
知识点:本题需注意假如上面有一层立方体的话露出的表面积为:4×正方形的面积+一半正方形的面积.