如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.
问题描述:
如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.
(1)△DBC和△EAC会全等吗?请说说你的理由;
(2)试说明AE∥BC的理由;
(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.
答
(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°-∠ACD,∠ACE=60°-∠ACD∴∠BCD=∠ACE在△DBC和△EAC中,∵BC=AC∠BCD=∠ACEEC=DC,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠...
答案解析:(1)要证两个三角形全等,已知的条件有AC=BC,CE=CD,我们发现∠BCD和∠ACE都是60°减去一个∠ACD,因此两三角形全等的条件就都凑齐了(SAS);
(2)要证AE∥BC,关键是证∠EAC=∠ACB,由于∠ACB=∠ACB,那么关键是证∠EAC=∠ACB,根据(1)的全等三角形,我们不难得出这两个角相等,也就得出了证平行的条件.
(3)同(1)(2)的思路完全相同,也是通过先证明三角形BCD和ACE全等,得出∠EAC=∠B=60°,又由∠ABC=∠ACB=60°,得出这两条线段之间的内错角相等,从而得出平行的结论.
考试点:等边三角形的性质;全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定与性质及等边三角形的性质;本题中(1)(2)问实际是告诉解(3)题的步骤,通过全等三角形来得出角相等是解题的关键.