对R上任意可导函数f(x),满足2-x/f'(x)≤0,则必有A f(1)+f(3)<2f(2) B f(1)+f(3)≤2f(2)A f(1)+f(3)>2f(2) D f(1)+f(3)≥2f(2)
问题描述:
对R上任意可导函数f(x),满足2-x/f'(x)≤0,则必有
A f(1)+f(3)<2f(2) B f(1)+f(3)≤2f(2)
A f(1)+f(3)>2f(2) D f(1)+f(3)≥2f(2)
答
(2-x)/f'(x)≤0
则 x>2时,f'(x)≥0,∴ f(3)≥f(2)
x