一叠牌共60张,其中A牌24张,B牌12张,C牌24张随机抽7张那么A牌和B牌都至少出现1张的概率是多少?对于范阳笠老师的解法,我有点疑问:有A无B,也有可能是A有2张,C有5张,能不能用“1张从A抽,6张从C抽”来计算呢?对于mixszlan老师的解法,对于博森小冯老师的解法,“至少出现一张的反面是A和B一张都不出现,那么出现的都是C”,也有可能是A、C出现了,B没出现,不一定是全C呀~
一叠牌共60张,其中A牌24张,B牌12张,C牌24张
随机抽7张
那么A牌和B牌都至少出现1张的概率是多少?
对于范阳笠老师的解法,我有点疑问:
有A无B,也有可能是A有2张,C有5张,能不能用“1张从A抽,6张从C抽”来计算呢?
对于mixszlan老师的解法,
对于博森小冯老师的解法,“至少出现一张的反面是A和B一张都不出现,那么出现的都是C”,也有可能是A、C出现了,B没出现,不一定是全C呀~
60张中选7张的种数总数为:x=60*59*58*57*56*55*54/(7*6*5*4*3*2)
A B 至少得出现一张,那么可以分情况讨论反面:
A 0 B 0 C 7
A 1 B 0 C 6
A 2 B 0 C 5
A 3 B 0 C 4
A 4 B 0 C 3
A 5 B 0 C 2
A 6 B 0 C 1
A 7 B 0 C 0
A O B 1 C 6
A 0 B 2 C 5
A 0 B 3 C 4
A 0 B 4 C 3
A 0 B 5 C 2
A 0 B 6 C 1
A 0 B 7 C 0
然后,1-反面
我刚才题目理解出现问题了,所以现在改了,不过可以肯定的是四级那位算出来的答案是对的,就是组合的问题,把A和C看成一个组,就是从这组里选7个,把B排除,后面的同理
首先确保AB都有一张,这样就是C(24,1)*C(12,1)
然后再剩下的58张中随便抽取5张就是C(58,5)
所有样本量是C(60,7)
概率=C(24,1)*C(12,1)*C(58,5)/C(60,7)=自己算,嘿嘿
C(24,1)*C(12,1)*C(58,5)/C(60,7)
即1减去 既无A也无B 有A无B 有B无A 三部分的概率
无A无B 即7张全从C的24张中抽
有A无B,1张从A抽,6张从C抽
有B无A,1张从B抽,6张从C抽
这个很容易算吧
C(60,7)-C(48,7)-C(36,7)+C(24,7)意思为,总60随意选7-A和C全部48选7-B和C全部36选7+C中24选7 +C中24选7 的意思是在( -A和C全部48选7-B和C全部36选7)中减了2次,把它加回来.最后÷总数C(60,7) 他们那样算 少了...
这样:
至少出现一张的反面是A和B一张都不出现,那么出现的都是C,可以知道24中选7张的总次数为:X=24*23*22*21*20*19*18/(7*6*5*4*3*2*1),60张中选7张的种数总数为:y=60*59*58*57*56*55*54/(7*6*5*4*3*2)
所以A B都不出现的概率为:x/Y=23/(15*29*5)
那么反面为:1-23/2175=2152/2175
一定要选我的哦