求教一道数学题,已知lg3,lg(sin x-0.5),lg(1-y)顺次成等差数列,求y的最小值
求教一道数学题,
已知lg3,lg(sin x-0.5),lg(1-y)顺次成等差数列,求y的最小值
2LgT=Lg(T~2),(sinx-0.5)~2=3-3y,sinx-0.5属于(0到0.5〕其平方属于(0到0.25〕则3-3y属于(0到0.25〕故y属于〔11/12 到1)最小值为11/12
lg3,lg(sin x-0.5),lg(1-y)顺次成等差数列
2lg(sinx-0.5)=lg3+lg(1-y)
(sinx-0.5)^2=3(1-y)
y=1-(sinx-0.5)^2/3
sinx=-1时,y有最小值
y的最小值
=1-(-1-0.5)^2/3
=1/4
lg3,lg(sin x-0.5),lg(1-y)顺次成等差数列
2lg(sinx-0.5)=lg3+lg(1-y)
(sinx-0.5)^2=3(1-y)
y=-(sinx-1/2)^2*1/3 +1
l令sinx=t
y=-(t-1/2)^2 *1/3 +1
注意sinx-0.5>0,即t>1/2
对称轴为t=1/2,当t>1/2,函数单调递减
所以t=1时函数取最小值,为ymin=-1/4 *1/3 +1=11/12
楼上错了,忽视了定义域.
lg(sin x-0.5)=[lg3+lg(1-y)]÷2
lg(sin x-0.5)=lg[3(1-y)]^1/2
(sin x-0.5)=√3(1-y)
(sin x-0.5)^2=3(1-y)
(sin x-0.5)^2=3(1-y)
y=1-(sin x-0.5)^2/3
当y取得最小值时 sin x-0.5取得最大值,即sinx取得最大值即sinx=1时
y的最小值=11/12