从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)

问题描述:

从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.
(1)共有多少种不同的排法?
(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)

4*3*6*5*4=1 440 (种)
4*2*6*5*4=960(种)
不知道是不是对的 ··

1)先选再排列:C(4,2)*C(6,3)*A(5,5)=14400
2)插入法:C(4,2)*C(6,3)*A(3,3)*A(4,2)=8640

(1)从4名男生中选出2人,有C42种结果,
从6名女生中选出3人,有C63种结果,
根据分步计数原理知选出5人,再把这5个人进行排列共有C42C63A55=14400
(2)在选出的5个人中,若2名男生不相邻,
则第一步先排3名女生,第二步再让男生插空,
根据分步计数原理知共有C42C63A33A42=8640.
答:(1)共有14400种不同的排列法.
(2)选出的2名男同学不相邻,共有8640种不同的排法
答案解析:(1)从4名男生中选出2人,有C42种结果,从6名女生中选出3人,有C63种结果,根据分步计数原理知选出5人,再把这5个人进行排列,写出结果.
(2)由题意知本题是一个分步计数原理,在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步原理得到结果.
考试点:排列、组合及简单计数问题.
知识点:本题考查排列组合及简单的计数原理,在题目中注意有限制条件的元素,注意不相邻问题的处理方法是利用插空法来解.