已知等差数列110,116,122,…,(1)在区间[450,600]上,该数列有多少项?并求它们的和;(2)在区间[450,600]上,该数列有多少项能被5整除?并求它们的和.
问题描述:
已知等差数列110,116,122,…,
(1)在区间[450,600]上,该数列有多少项?并求它们的和;
(2)在区间[450,600]上,该数列有多少项能被5整除?并求它们的和.
答
知识点:本题主要考查了等差数列的性质.考查了学生对等差数列的通项公式和求和公式的掌握.
an=110+6(n-1)=6n+104,(1)由450≤6n+104≤600,得58≤n≤82,又n∈N*,∴该数列在[450,600]上有25项,其和Sn=12(a58+a82)×25=13100.(2)∵an=110+6(n-1),∴要使an能被5整除,只要n-1能被5整除,即n-1=...
答案解析:(1)根据题设中的数列的前三项可求得数列的通项公式,进而根据450≤an≤600,求得n的范围,确定数列的项数,进而根据等差数列的求和公式求得它们的和.
(2)根据数列的通项公式可知要使an能被5整除,只要n-1能被5整除,即n-1=5k,进而根据58≤5k+1≤82,求得k的范围,进而可判断在区间[450,600]上该数列中能被5整除的项共有5项即第61,66,71,76,81项,利用等差数列求和公式求得答案.
考试点:等差数列的性质;等差数列的前n项和;整除的定义.
知识点:本题主要考查了等差数列的性质.考查了学生对等差数列的通项公式和求和公式的掌握.