数学必修五——数列题

问题描述:

数学必修五——数列题
设数列{an}的前n项和为Sn,对于所有的自然数n,都有Sn=n(a1+an)/2.
(1)求证{an}是等差数列
(2)若S10=310.S20=1220,试确定前n项和Sn的公式

1.
n>=2时
An=Sn-S(n-1)=n(A1+An)/2-(n-1)(A1+A(n-1))/2
(n-2)An-(n-1)A(n-1)=-A1
(n-1)An-(n-1)A(n-1)=An-A1
An-A(n-1)=(An-A1)/(n-1)
同理A(n+1)-An=(A(n+1)-A1)/n
两式相减
(A(n+1)-An)-(An-A(n-1))
=(A(n+1)-A1)/n-(An-A1)/(n-1)
=[(n-1)A(n+1)-nAn+A1]/[n(n-1)]
=[n(A(n+1)-An)-(A(n+1)-A1)]/[n(n-1)]
=[(A(n+1)-A1)-(A(n+1)-A1)]/[n(n-1)]
=0
A(n+1)-An=An-A(n-1)
{An}是等差数列
2.
S10=10A1+1/2×10×9×d=310
S20=20A1+1/2×20×19×d=1220
解方程得A1=4 d=6
Sn=4n+1/2×n(n-1)×6=n(3n+1)