对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有(  )A. f(0)+f(2)<2f(1)B. f(0)+f(2)≤2f(1)C. f(0)+f(2)≥2f(1)D. f(0)+f(2)>2f(1)

问题描述:

对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有(  )
A. f(0)+f(2)<2f(1)
B. f(0)+f(2)≤2f(1)
C. f(0)+f(2)≥2f(1)
D. f(0)+f(2)>2f(1)

依题意,当x≥1时,f′(x)≥0,函数f(x)在(1,+∞)上是增函数;
当x<1时,f′(x)≤0,f(x)在(-∞,1)上是减函数,
故当x=1时f(x)取得极小值也为最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).
故选C.
答案解析:分x≥1和x<1两种情况对(x-1)f′(x)≥0进行讨论,由极值的定义可得当x=1时f(x)取得极小值也为最小值,故问题得证.
考试点:导数的运算.
知识点:本题以解不等式的形式,考查了利用导数求函数极值的方法,同时灵活应用了分类讨论的思想,是一道好题.