一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上第面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为(  )A. 30cmB. 40cmC. 50cmD. 60cm

问题描述:

一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上第面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为(  )
A. 30cm
B. 40cm
C. 50cm
D. 60cm

画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR  ①,20π=α(20+R)  ②,由①②解得,α=π2,R=20,∴O...
答案解析:由题意需先画出圆台的侧面展开图,并还原成圆锥展开的扇形,则所求的最短距离是平面图形两点连线,根据条件求出扇形的圆心角以及半径长,在求出最短的距离.
考试点:多面体和旋转体表面上的最短距离问题.
知识点:本题考查了在几何体表面的最短距离的求出,一般方法是把几何体的侧面展开后,根据题意作出最短距离即两点连线,结合条件求出,考查了转化思想.