换元法解分式方程(x²-2)/(x+3)-(6x+18)/(x²-2)+1=0

问题描述:

换元法解分式方程(x²-2)/(x+3)-(6x+18)/(x²-2)+1=0

设(x²-2)/(x+3)=y
即y-6/y+1=0
y= 2或-3(舍去)
X=4,-2
所以X=4 或-2

写成分式形式。(6x+18)可以提取出3.然后写成分式形式后。通分。分母是(x+3)(x平方-2)然后分母相同。分子相加减

令(x^2-2)/(x+3)=a则(6x+18)/(x^2-2)=6/a方程改写为a-6/a+1=0a^2+a-6=0(a-2)(a+3)=0a=2 or -3a=2时,(x^2-2)/(x+3)=2x^2-2=2x+6x^2-2x-8=0(x-4)(x+2)=0x=4 or -2a=-3时,(x^2-2)/(x+3)=-3x^2-2=-3x-9x^2+3x+7=0derta=9...