有五封信随机装入五个信封,求至少有两封信与信封一值的概率

问题描述:

有五封信随机装入五个信封,求至少有两封信与信封一值的概率

分三类,第一类,恰有两封信与信封一致,有C(5,2)*2=20种放法;第二类,恰有三封信与信封一致,有C(5,3)*1=10种放法;第三类,五封信与信封都一致,有1种放法。
所以,所求概率为:(20+30+1)/5!=31/120。

试求至少有两封信与信封标号一致的的概率。 还有 解出来的话能详细的说明下.谢谢 总放法为5A5=5!=120种 5个全一致情形只有1种有且仅有3个一致

回答:
这个问题属于“乱序”(Derangement)问题的变种.
共有5! = 120种放法.放对0封和1封的情况分别是C(5, 0)x44 = 44和C(5, 1)x9 = 45.故放对2封以及2封以上的概率是(120 - 44 - 45) / 120 = 31/120 ≈ 0.2583.