配方求顶点y=2x^-3x-4
问题描述:
配方求顶点y=2x^-3x-4
答
y=2x^-3x-4=2(x^2-3/2x+9/16)-41/8=2(x-3/4)^2-41/8顶点坐标为(3/4,-41/8)
答
y=2x^2-3x-4=2(x^2-3x/2-2)=2[(x-3/4)^2-25/16]=2(x-3/4)^2-25/8
所以顶点坐标为(3/4,-25/8)
答
y=2(x²-3x/2)-4
=2(x²-3x/2+9/16-9/16)-4
=2(x²-3x/2+9/16)-9/8-4
=2(x-3/4)²+(-41/8)
顶点
(3/4,-41/8)
答
y=2(x-3/4)^2-4-9/8