函数y=ax^2-2a^2x+1(a>0)在区间[-1,2]上的最值我知道要分类讨论,但不知从何谈起,希望好心人能告诉我解题过程

问题描述:

函数y=ax^2-2a^2x+1(a>0)在区间[-1,2]上的最值
我知道要分类讨论,但不知从何谈起,希望好心人能告诉我解题过程

当a=0时,y=1,所以a=0不合题意
当a不等于0时,y'=2ax-2a^2
令y'=0,2ax-2a^2=0 因为a不等于零,所以解得x=a
当xa,该函数为增函数
所以在x=a处取得极小值
若a在区间[-1,2]上,则该函数的最小值为1-a^3

因为a>0,所以函数开口朝上,然后用(-b)/(2a)求出对称轴为x=a。
然后讨论a的值
当a然后分别讨论1=2的情况
就这样

y=ax^2-2a^2x+1=a(x-a)^2+1-a^3.
(1)当a>=2时,y在[-1,2]上递减,
此时y的最小值为1+4a-4a^2,最大值为1+a+2a^2;
(2)当0