函数y=cos^2x+sinx(—π/6≤x≤π/6)的最大值与最小值之和为?
问题描述:
函数y=cos^2x+sinx(—π/6≤x≤π/6)的最大值与最小值之和为?
答
y=(cosx)^2+sinx
=1-(sinx)^2+sinx
=-(sinx-1/2)^2+5/4
-π/6≤x≤π/6
-1/2≤sinx≤1/2
-1≤sinx-1/2≤0
0≤(sinx-1/2)^2≤1
故1/4≤y≤5/4
所以最大值与最小值之和是1/4+5/4=3/2
答
f(x)=(cosx)^2+sinx
=1-(sinx)^2+sinx
=-(sinx)^2+sinx+1
=-(sinx-1/2)^2+5/4
-π/6≤x≤π/6
∴-1/2≤sinx≤1/2
∴1/4≤f(x)≤5/4
最大值与最小值之和=3/2