求证:成轴对称的两个图形,对应线段的延长线如果相交,交点一定在对称轴上

问题描述:

求证:成轴对称的两个图形,对应线段的延长线如果相交,交点一定在对称轴上

设y轴右边有两点A(x1,f(x1)),B(x2,f(x2))
则有对称点A'(-x1,f(x1)),B'(-x2,f(x2))
分别过四点作直线Lab和直线La'b':
Y=(f(x1)-f(x2))/(x1-x2)*X+(f(x1)*x2-f(x2)*x1)/(x1-x2)
Y=(f(x1)-f(x2))/(x2-x1)*X+(f(x2)*x1-f(x1)*x2)/(x2-x1)
Lab与y轴交点(0,(f(x1)*x2-f(x2)*x1)/(x1-x2))
La'b'与y轴交点(0,(f(x1)*x2-f(x2)*x1)/(x1-x2))
即两直线与y轴交于同一点