若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是( ) A.m≤-3或m≥0 B.-3≤m≤0 C.m≥-3 D.m≤-3
问题描述:
若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是( )
A. m≤-3或m≥0
B. -3≤m≤0
C. m≥-3
D. m≤-3
答
原不等式转化为找f(x)=x2-4x在x∈[0,1]上的最小值,让其大于等于m,
又因为f(x)=x2-4x=(x-2)2-4,对称轴为:x=2,x∈[0,1]上是减函数,
故最小值为f(1)=12-4×1=-3,所以m≤-3.
故选D.