求因式分解(X^4-4X^2+1)(X^4+3X^2+1)+10X^4

问题描述:

求因式分解(X^4-4X^2+1)(X^4+3X^2+1)+10X^4

(X^4-4X^2+1)(X^4+3X^2+1)+10X^4
为方便起见,可以用换元法来分解,设x^4+1=M,x²=N,

原式
=(M-4N)(M+3N)+10N²
=M²-MN-12N²+10N²
=M²-MN-2N²
=(M-2N)(M+N)
=(x^4+1-2x²)(x^4+1+x²)
=(x^2-1)²[(x^4+2x²+1)-x²]
=(x-1)²(x+1)²[(x²+1)²-x² ]
=(x-1)²(x+1)²(x²+1-x)(x²+1+x)

原式=[(x^4+1)-4x²][(x^4+1)+3x²]+10x^4
=(x^4+1)²-x²(x^4+1)-12x^4+10x^4
=(x^4+1)²-x²(x^4+1)-2x^4
=(x^4+1-2x²)(x^4+1+x²)
=(x²-1)²[(x^4+2x²+1)-x²]
=(x+1)²(x-1)²[(x²+1)²-x²]
=(x+1)²(x-1)²(x²+x+1)(x²-x+1)