某车站在检票前若干分钟就开始排队,每分钟来得旅客人数一样多,从开始检票到等候检票的队伍消失,若同时开5个检票口则需要30分钟,若同时开6个检票口则需要20分钟,如果要使队伍10分钟消失,那么需要同时开多少个检票口?

问题描述:

某车站在检票前若干分钟就开始排队,每分钟来得旅客人数一样多,从开始检票到等候检票的队伍消失,若同时开5个检票口则需要30分钟,若同时开6个检票口则需要20分钟,如果要使队伍10分钟消失,那么需要同时开多少个检票口?

设1个检票口1分钟检票的人数为1份.因为5个检票口30分钟通过(5×30)份,6个检票口20分钟通过(6×20)份,说明在(30-20)分钟内新来旅客(5×30-6×20)份,所以每分钟新来旅客:(5×30-6×20)÷(30-20)=3(...
答案解析:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.
考试点:牛吃草问题.


知识点:此题重点要理清题中的数量关系,弄清旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.