求和1*4+2*5+3*6+…+n*(n+1)
问题描述:
求和1*4+2*5+3*6+…+n*(n+1)
答
将 n(n+3) 拆成n^2+3n,再重新组成两个数列 :1^2,2^2,3^2,...,n^2和3,6,9,...,3n,利用公式即可求出解:Sn=1×4+2×5+3×6+…+n(n+3) =1×(1+3)+2(2+3)+3(3+3)+…+n^2+3n =1^2+3+2^2+2×3+3^2+3×3+…+n^2+3*n =(1^2+2^...