已知双曲线与椭圆x2/36 y2/27=1有相同的焦点,且与椭圆有一个交点的横坐标为4 80已知双曲线与椭圆x2/36 y2/27=1有相同的焦点,且与椭圆有一个交点的横坐标为4801.求双曲线方程 2.过双曲线的右焦点作倾斜角为派/4的直线,与双曲线交于A,B两点,求AB中点到双曲线右准线的距离

问题描述:

已知双曲线与椭圆x2/36 y2/27=1有相同的焦点,且与椭圆有一个交点的横坐标为4 80
已知双曲线与椭圆x2/36 y2/27=1有相同的焦点,且与椭圆有一个交点的横坐标为4
801.求双曲线方程
2.过双曲线的右焦点作倾斜角为派/4的直线,与双曲线交于A,B两点,求AB中点到双曲线右准线的距离

1.由题意可知 设双曲线方程为x²/a²-y²/b²=1 ∴ a²+b²=36-27=9又将横坐标为4带入 椭圆的方程得y= 根号15又将此坐标带入双曲线方程 得16/a²-15/b²=1 ∴a²=4 b²=5 ...