如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AC=3cm,则BE=______cm.
问题描述:
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE=______cm.
答
(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,∴CD=CE,∵∠ACB=90°,∴∠ACB=∠DCE,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS);(2)∵...
答案解析:(1)求出∠ACD=∠BCE,根据SAS推出两三角形全等即可;
(2)根据全等得出AD=BE,根据勾股定理求出AB,即可求出AD,代入求出即可.
考试点:全等三角形的判定与性质;等腰直角三角形.
知识点:本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.